
INSIDE THE ULTIMA ONLINE GOLD DEMO
 - ENABLING DEBUG OUTPUT

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome does

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

HxD, a very neat hex editor and above all, it’s free

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺

THE SERVER LOOP

FROM SERVER LOOP TO SUB_46CD9C

The picture on the previous page showed the complete server loop, it’s running in the main

thread and will only stop when the client thread destroys the game window.

The loop will read packets and will send packets (if any), the actually server processing

(skills, NPC’s, events, and whatever is hidden deep inside) is done at

FUNC_TheActualServerProcessor. This document is not about that function, haha!

Now, if this processing took more than 10 seconds, then a call is made to a function at

address 0046CD9C (sub_46CD9C). The related text indicates this function logs an error.

Let’s look at this function:

Now, that function is not doing anything useful! A pointer is verified against NULL, but in

both cases the function return zero or false. My guess: there was an actual logging function

here but it was left out during uodemo compilation.

C++ version (it’s a class function):

bool UnknownObject::sub_46CD9C()
{
 if(this->something == NULL)
 return false;
 return false;
}

And some guys out there say decompilation is impossible? Ah!

MORE ANALYSIS

Before doing something with that function, let’s look somewhat deeper.

The possible logger function is operating on an object instance stored at unk_699A40.

I remember seeing that address before and I went looking for it again. I found it. Did you

read my document about Environment Variables? Hint: “printl”.

Let’s look at sub_46CCA0:

If you read that document, then you know I told you “printl” is read but the read value is

never used. My guess: it’s some sort value that indicates after how many lines the log file

must be flushed. But since the actual log output code is not in there, this is pure speculation!

THE GOD COMMAND

By following cross references to sub_46CD9C I found out that GOD client commands are also

logged on OSI. Seems logical, you want to know what your GM’s are doing right?

NOTE: the log function is expecting 7 parameters (see RET 001Ch) (0x1C / 4 = 7)

OUTPUT DEBUG STRING

This log function is more than interesting and it seems that it is not only used to log errors or

warnings, it also logs informational messages from the server like godcommands.

So, three options:

1) ignore this log function and ignore any log attempts

2) write the logs to file

3) write the logs to the Windows Debug Environment (or whatever is called)

I chose option 3 because it’s easy to implement.

To do this, look at the import section for the OutputDebugString function. Search google if

you don’t know what that is. Your life depends on it!

UoDemo imports it, nice, so we don’t need to add it. I looked for cross references to this

Windows API function and I stumbled upon this code:

Wow! That code made my heart stop beating! I couldn’t believe it would be that easy ☺.

Really, “vsprintf” is in there, I hope you know your C API?

This is a basic implementation of an OutputFormattedDebugString. Note, that’s how I name

that function, you will probably give it a different name.

OUTPUT FORMATTED DEBUG STRING

I took some time and documented this function (which, again, is inside the uodemo):

This is the C version for the curious ones:

void FUNC_OutputFormattedDebugString(char *Format, …)
{
 char TempBuffer[260];
 va_list list;

 va_start(list, Format);
 vsprintf(buffer, Format, list);
 va_end(list);

 OutputDebugString(TempBuffer);
}

Basic stuff, I’m even sure you can find this function inside the MSDN examples.

The idea is to make the unused logger function call this function and have it format the 7

parameters into readable text.

NOTE: this function can also be used to attach to the script engine and have it log during

script creation or after script creation, suddenly many options are open!

ADDITIONAL NOTE: this function is probably in there (yet unreferenced) because OSI

used/uses it during development

LOGFUNCTION PATCH – VERSION 1

I’m going to show you 3 different versions of my patch. Why 3? Because when you are doing

something you suddenly discover a better way to attack the problem.

This was my first version:

The function will push 7 values and then call the FUNC_OutputFormattedDebugString

function. The function pointer is stored in memory. This is because of optimizing for size. I

applied some tricks here but I wasn’t very happy.

Why not? Because I realized I also wanted to log the caller EIP, so when viewing the log

output you can read the IP address that the function will return to. That way you start

analyzing inside the code after you noticed something interesting in the debug output.

NOTE: this function pushes the parameters backwards; the first pushed value is actually the

last value pushed by the caller. So when interpreting the debug output, you must do this

backwards.

LOGFUNCTION PATCH – VERSION 2

This is the second version, which will log the EIP address of the caller. I also added numbers

to indicate that the parameters are pushed backwards.

But I still wasn’t happy 100%. I didn’t like the output, I wanted it to be in original order and I

wanted the EIP address to be the first value logged.

LOGFUNCTION PATCH – VERSION 3 – WASTE OF TIME

The function following sub_46CD9C is called only once and that function only calls

sub_46CDC1.

Because sub_46CDB7 is called only once it means that it can be completely removed by

editing or modifying only one cross reference.

That one cross reference can be found inside an initialization list, a list created by the

compiler to initialize static objects and static variables and is executed by _cinit.

By replacing sub_46CDB7 with sub_46CDC1 you eliminate sub_46CDB7 and that code can

now be overwritten with the code for the logger.

However, while coding version 3 of my patch I suddenly realized that it can be done simpler.

It was there the whole time but I just didn’t see the possible optimization technique until

version 3 was almost finished.

I have no picture of version 3 but instead of “add edx, 4” I used “sub edx, 4” to push in

reverse thus maintaining the original push order.

LOGFUNCTION PATCH – VERSION 4

This is the final version which you can find in UoDemo+ Publish 7:

Notice that I replaced function sub_46CDB7 during creation of version 3. I didn’t want to put

it back in (time and mood), so for now it remains patched like that. A weird reminder to the

existence of version 3.

The trick is that ECX is counting down while pushing (because of the LOOP instruction), so

“SUB EDX, 4” which I originally planned to use is not needed since the down counting ECX

can be used for that purpose instead. It’s all about optimizing for size to me; a faster version

can be created with ease now since there is extra space. Are you up to that task?

INCREASING THE BUFFER FOR THE DEBUG STRING

Take a look at the “output formatted debug” function again:

The buffer size is 0x104 bytes or 256+4=260 bytes or characters. That’s big, but since we

have no clue what kind of logs the uodemo will create it’s better to increase this buffer size.

Remember to modify the references to the VAR_TempBuffer also.

The modified function (with a really big buffer, just to be sure):

That’s it, use this document to apply a patch yourself and view the results my friend! You’ll

be amazed (I think).

