
INSIDE THE ULTIMA ONLINE GOLD DEMO
 - Environment Variables

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome those

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

HxD, a very neat hex editor and above all, it’s free

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ I’ve been into computer starting from age twelve, and Ultima VII was the first

game I bought myself. The opening screen of this game is still grafted in my visual memory

and I can recall it at any time without any problems.

SERVER.TXT

Inside the uogolddemo subdirectory there is a file “server.txt”, this file contains readable text

and I wondered what the values mean, and how they are used inside the demo.

I started my investigation by searching for server.txt and I found this function:

It’s the first call in this function that struck my attention. A call to getenv; why would the

demo do that? It is only a demo, is that environment variable used for making the demo do

other things? Is it a remainder from the server code? Each OSI server shares the same code

base but the environment variable defines which server controls what part of Britannia?

If you look at the assembler code, if the environment variable SERVERNAME does not exist

then it will default to UOGoldDemo. That’s the directory where server.txt and some other

files are stored in. Thus by setting SERVERNAME you can have those files placed

somewhere else. With the default uodemo.exe this will fail because there is no other

directory in uodemo.dat. But with the UODEMO.DAT removal patch we can now unlock this

technology.

OTHER ENVIRONMENT VARIABLES

Are there other environment variables we can set in the demo? To check this, you have to go

to the getenv function and check for cross-references.

Screenshot:

There are 5 calls to getenv, the first one is executed when reading server.txt, and the 2 last

ones are calls made by the C API and are not relevant.

We must take a look at sub_46CCA0 and sub_48B675.

DECAY_TEST

By looking at the code you see that an environment variable DECAY_TEST is read, if its

value is not set, then var_C will be 0. If its value is “on” (case-insensitive comparison) then

var_C will be 1.

But either case, at 0x0048B819 var_C will always be set to 2!

This means that the value of DECAY_TEST is unused! Now, can we place another value in

var_C and will the demo behave different? That’s for you to test. I don’t care at the moment.

This is C representation of the code above so you can understand the “unlogicness” better:

…
{
 …
 int var_C = 0;
 char *Str1 = getenv(“DECAY_TEST”);
 if(str1 != NULL && _strcmpi(Str1, “on”) == 0)
 {
 var_C = 1;
 }
 var_C = 2;
 var_10->sub_45960F(var_c);
 …
}

printl

This is another code snippet from the demo where an environment variable named printl is

accessed. But I have not discovered what this is used for. From the scanf we can learn that

the value must be an integer and not a string.

Mysteries

Some of the mysteries remain, especially DECAY_TEST and printl. DECAY_TEST is not

really used and printl, well, analyzing its meaning will be a postponed task.

