INSIDE THE ULTIMA ONLINE GOLD DEMO
-~ Environment Variables

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This
demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,
however so far no tools or knowledge has been published. This project is to overcome those
shortcomings.

URL’s with some proof for this:
http://www.runuo.com/forums/general-discussion/94767-help—m-files.html
http://azaroth.org/2008/12/31/your—topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our
own demo. By default mounting horses is not possible in the demo, but what if we can alter
the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that
DMCA thing is in the way?

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.
HxD, a very neat hex editor and above all, it's free

I'm just a guy who loves the Ultima universe and knows a bit assembler. Why not combine
the two? © I've been into computer starting from age twelve, and Ultima VII was the first
game [bought myself. The opening screen of this game is still grafted in my visual memory
and I can recall it at any time without any problems.

Inside the uogolddemo subdirectory there is a file “server.txt”, this file contains readable text
and I wondered what the values mean, and how they are used inside the demo.

[started my investigation by searching for server.txt and I found this function:

PR TTL LR A

(BB468ASC FUNC Init Server proc near ; CODE XREF: FUNC Dolnit ServerSettings+FTp
(BB46BASC

"EB46BASC LOCAL multis IsW= duord ptr -234h

(B8468A5C LOCAL templates IsW= dword ptr -Z38h

(88468A5C GLOBALD IsResourcesY= dword ptr -22Ch

(@0468ASC GLOBALd IsAnimDatall= dword ptr -228h

(BB4G68ASC GLOBALd IsHuesW= dword pty -224h

:0B468ASC GLOBALd IsTiledatal= dword ptr -228h

(BB4GEASC GLOBALd IsArtW= dword ptr -21Ch

'BB468ASC GLOBALd IsTerrainW= dword ptr -218h

/BB4GBASC GLOBALdD IsStaticsW= dword ptr -214h

(BB46BASC THIS ServerSettingsObject= dword ptr -218h
(BB46BASC UAR Filename= dword ptr -26Ch

(@B468ASC UAR StringBeingRead= dword ptr -2068h

'BB468ASC UAR EnvironmentString ServerMame= dword ptr -284kh
(BB46BASC UAR TemponaryStringBuffer= byte ptr -206h
(BB46BASC UAR_StringTolLookFor= byte ptr -166h

(BB46BASE

'BB46BASE push ebp

|BB468ASD mou ebp, esp

|B8468ASF sub esp, 234h

(@B468A65 mou [ebp+THIS ServerSettingsObject], ecx

'BBu68AGB push offset UarHame ; "SERUERMNAHE"
'BB46BA7A call _getenw

(BB46EA7E add esp, L

(BB4GEBATE mou [ebp+UaR EnvironmentString_ServerName], eax
"BBAGBATE cmp [ebp+UAR_EnvironmentString ServerMame], 8
(BB46BABS jnz short LOCAL ServerName

'BB46BABY mou [ebp+UaR EnvironmentString ServerMame], offset alogolddemo : "UDGoldDemo™
(BB4A68A91

'BBAGBA91 LOGCAL ServerHame: ; CODE XREF: FUHC_Init_ Seruver+291j
(BB4GEA91 mou eax, [ebp+UAR_EnvironmentString ServerHame]
(BB4AGRADY push eax 5 Source
(AB46BA98 mov ecx, [ebp*THIS ServerSettingsObject]

AB46BAPE add ecx, hih ; '@

‘BB468AAT push ecx 5 Dest
'HB4GBAAZ call _strepy

(HB46BARY add esp, 8

It’s the first call in this function that struck my attention. A call to getenv; why would the
demo do that? It is only a demo, is that environment variable used for making the demo do
other things? Is it a remainder from the server code? Each OSI server shares the same code
base but the environment variable defines which server controls what part of Britannia?

If you look at the assembler code, if the environment variable SERVERNAME does not exist
then it will default to UOGoldDemo. That’s the directory where server.txt and some other
files are stored in. Thus by setting SERVERNAME you can have those files placed
somewhere else. With the default uodemo.exe this will fail because there is no other
directory in uodemo.dat. But with the UODEMO.DAT removal patch we can now unlock this
technology.

Are there other environment variables we can set in the demo? To check this, you have to go
to the getenv function and check for cross-references

Screenshot:
; char *# cdecl getenv{const char =UarHame)}
_getenu proc near ; CODE XREF: FUNC_Init Server+14aTp

; sub_ 46CCAB+2BTp ...

_ioix]
D, | T. Address | Test |
) p FUMC_Init_Server+14 _geteny
lwlup p sub dBCCAD+ZE call _getenw
lalUp p sub_4B8BEYR+177 call _geteny
lelUp p sub 4EI250+9 call _getenw
WD p __spawnvpe+dd. call _geteny
1k Cancel Help Search
Linec 1 of 5 >
retn
_getenu endp

There are 5 calls to getenv, the first one is executed when reading server.txt, and the 2 last
ones are calls made by the C API and are not relevant.

We must take a look at sub_46CCAO and sub_48B675.

BB4BBYENR
BB48BYEY
BB48BYEC
BB48B7F1
BB48BYFL
BB4BBYFY
BB48BYFB
BB48BYFD
gB48BE B2
d848BE B
BB48BEBG
g848BE& BB
A048B8 BE
gB4EBE1A
gB48BE12
B848BE19
B848B819 loc 4BEB19:
g848BE19
gB48BE19
gB48B820
gB48BE23
BB4EBE24
BB4BBE2Y
gB48BE2C
B848BE33

mov
push
call
add
moy
cmp
jz
push
mov
push
call
add
test
jnz
mow

moy
mouy
push
mov
call
mov

jmp

[ebp+var C], ©

offset abecay test ; "DECAY TESTY
_gpteny

esp, &

[ebp+53tr1], eax
[ebp+5tr1], @

short loc 48BE1Q
offset aln_@ : Mon’
ecx, [ebp+3tri]

BCX ; S5tr1
_ strompl

esp, 8

eax, eax

short loc_ 48BE1D
[ebp+uvar_C],

CODE ¥REF: sub_48B675+186T]
sub_48B675+19BTj

[ebp+var C], 2
edx, [ebp+var C]

edx
ecy, [ebp+var_ 18]
sub_459468F

[ebp+uar_ E], @
short loc 48BE3E

By looking at the code you see that an environment variable DECAY_TEST is read, if its
value is not set, then var_C will be 0. If its value is “on” (case-insensitive comparison) then

var_C will be 1.

But either case, at 0x0048B819 var_C will always be set to 2!

This means that the value of DECAY_TEST is unused! Now, can we place another value in
var_C and will the demo behave different? That’s for you to test. [don’t care at the moment.

This is C representation of the code above so you can understand the “unlogicness” better

int var C=0;

char *Strl = getenv("DECAY_TEST");

if(strl 1= NULL && _strempi(Stri, “on”) == 0)

var_ C =1,

}
var_C = 2;
var_10->sub_45960F(var_c);

B846CCCH push offset aPrintl ; “printl”

B846CCCER call _getenu

8846CCDA add esp, 4

A846CCD3 mou [ebp+3rc], eax

BB46CCEDG cmp [ebp+3rc], @

ae46CCDA jz short loc_46CCF3

15T T H H T mou eax, [ebp+var_ 8]

8846CCDF push eax

ABLGCCER push offset aD 6 ;R

BB46CCES mou ecx, [ebp+3Src]

8846CCES push ecx ; Src

BB46CCED call _sscanf

B046CCEE add esp, BCh

B846CCF1 jmp short loc 46CD23

BOYGECES; =—romroses e T T T T T T T T T T T
B046CCF3

B046CCF3 loc_ AWG6CCF3: ; CODE XREF: sub A46CCAB+3AT]

This is another code snippet from the demo where an environment variable named printl is
accessed. But I have not discovered what this is used for. From the scanf we can learn that
the value must be an integer and not a string.

Some of the mysteries remain, especially DECAY_TEST and printl. DECAY_TEST is not
really used and printl, well, analyzing its meaning will be a postponed task.

