
INSIDE THE ULTIMA ONLINE GOLD DEMO
 - THE COMMAND LIST – PART 1

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome does

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

BRAIN, every one has one, use it

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ A nice story from my school period; during the dBase IV classes we had to write

some programs as practice. However, I was always the first one to be ready and I got bored

while waiting for the others to finish. So I wrote an arkanoid-like game in dBase IV (with

mouse support ☺). When the teacher found out, he couldn’t say much other than “Please

don’t do this during class time.”.

 STUMBLING UPON DATA

While browsing through the disassembly of the UoDemo and while stepping through the code

with the debugger I stumbled upon an array which looked like offset data. IDA incorrectly

identified this data as bytes.

 THE STRUCTURE

I started correcting the identification using the data option of IDA, which resulted in the

following:

As you can see, lots of interesting stuff is starting to emerge. After my corrections IDA

automatically identified pointers to strings and added comments for them. Also, look at the

fact that IDA identifies pointers to code labeled sub_XXXXXX. Does this mean that the code

for a (scripted) WHILE is available at 0040D29C? Most probably yes. It really looked like I

found a command structure array in memory.

So I used IDA to create a structure from this data:

IDA created a structure for me and I renamed the structure members based on what I saw:

When you do this at home; if you don’t know what a certain member is being used for indicate

this in its name. That’s why I named 2 members UnknownText and UnknownValue.

You can now apply this structure to the data and IDA will do the rest:

Then I discovered I made an error. My brain didn’t work well ☺.

Now, what happened? I started applying the structure in the middle of a bigger something

(array?). I wouldn’t have encountered this problem if I had started at off_606EA0. It’s an

array by the way. All the structures follow each other sequentially in memory.

THE ARRAY

Okay, so if offset 00606EA0 is the beginning of the array. Where does it end? What is the

size of the array?

To locate the ending I simply scrolled down looking for something that was off:

You can now calculate the size of the structure assuming it ends at 00609EB0:

First step, apply the structure at the beginning:

Next step, our calculated array consisted of 3076 DWORD’s, each DWORD being 4 bytes. Our

structure consists of 4 DWORD’s. Therefore to get the number of structures in the array you

have to divide 3076 by 4, the result is 769 or 0x301 (hexadecimal).

With this knowledge we have IDA create an array:

Result:

CLEANING UP – PART 1

Now, what annoys me here is that the array view isn’t that easy to read. Sure, if you look

closely you can see text hidden in it, but that isn’t easy to work with.

Take a look at a DWORD view (by removing the array and marking the data as DD):

I don’t know about you, but I find the above view much more interesting. Even though it

doesn’t show that we are dealing with a structure + array. This situation needs to be solved

somehow.

One way of solving this is to modify all the string variable names into capitals, the red square

I have already modified, the orange part I didn’t do yet, see yourself:

And there is yet another problem we have to solve, IDA Pro isn’t perfect. It’s interactive and

its interactivity comes in handy now:

The red circle is what we will look into next. The orange circles are strings, so I can only

assume that the red circle should also be a readable string! Yes! My brain at work again.

Follow the pointer and look at the red circles, the first red circles I have corrected by telling

IDA Pro that an ASCII string is at that location, the other red circles I still have to correct and

the orange circles are there for comparison with the orange circle above:

To give you a better idea how it works:

The GLOBAL_CommandList is born

Now, one thing is certain now, the array we are working on contains a list of supported

operators and built-in functions, therefore I named that variable GLOBAL_CommandList.

When stepping through the code I can now see access to the structure and this will help in

analyzing the behavior of the Ultima Online Demo.

CLEANING UP – PART 2

No words, just screenshots:

FINAL WORD

There is no final word yet since we are just beginning to understand the mysteries of the

GLOBAL_CommandList. The next step is most definitely naming all the functions that are

being called, which will bring us yet one step closer to fully understanding the inner workings

of the Ultima Online demo scripting engine.

While typing this I already have an idea what the strings like “ii”, “voi” and so on mean. This

will be covered in Part 2.

In Part 2, I will also add screenshots of some interesting functions inside this command list.

Enjoy waiting.

