INSIDE THE ULTIMA ONLINE GOLD DEMO
- THE COMMAND LIST — PART 2

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This
demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,
however so far no tools or knowledge has been published. This project is to overcome does
shortcomings.

URL’s with some proof for this:
http://www.runuo.com/forums/general-discussion/94767-help—m-files.html
http://azaroth.org/2008/12/31/your—topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our
own demo. By default mounting horses is not possible in the demo, but what if we can alter
the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that
DMCA thing is in the way?

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.
BRAIN, every one has one, use it

I'm just a guy who loves the Ultima universe and knows a bit assembler. Why not combine
the two? © In my 13" year my mom won a PC, 286, in a local supermarket. It came with
MS-DOS 4.01 on big floppies. One day my mom asked me to continue a disk copy she had
started. You had to play disc jockey back then; the PC didn’t have enough memory to hold
the disk image. I got confused by the DISKCOPY program; my English wasn’t good yet and
didn’t know the difference between source and destination. I really remember panicking and
up to this day I believe I copied the destination to the source. Please, don’t tell my mom.

In Part 1 I showed you how I opened up the Command List. It’s a very important array used
by the scripting engine and it is really the gate for seeing how the UO Demo code works.
Plus, if the UO Demo code is directly based on the UO server code back then, well, 1 plus 1 is
2. In this part we continue the journey into the command list.

Now, I told you I needed to clean up the array to make it visually more attractive. [spent
more than a day on this job but it has been rewarding:

.Ba6B6EAB GLthL_BEmmandList st}uct_cuﬁmand <offset a_ TK_IF, offset COMMAND __TK IF, 3, %

(BAGAGERE : DATA HREF: sub_4BCF6E+22Tr

.BBGOAEAR ; sub_4BCFAE+7ATr ...

(BB6GBGERD offset a_ wvi i 8> ; "TH_IF"

:BB6B6EAD struct_Command <offset a_ TK ELSE, offset COWMAMD__ TK ELSE, 2,
(BB6BGEAD offset a_ v i 8>

| BBGBOERD struct_Command <offset a_ TK_ENDIF, offset COMMAHD TH EMDIF, 8, Y\
(BBGB6GERD offset a_ v__ B>

.BB6B6ERE struct_Command <offset a_ TK_WHILE, offset COMMAND__ TK_WHILE, 3, \
(BBGBGERD offset a_wvi i 1>

.BBOBHEAR struct_Command <offset a_ TK _ENDWHILE, offset COMMAND__ TK_ENDWHILE, 2,\
(BB6BAGERD offset a_ v i 1>

.GB6BGERS struct_Command <offset a_ TK_FOR, offset COMMAMD__ TK_FOR, 3, %
(BB6BSEAD offset a vii 6>

(BBOBOEAB struct_Command <offset a_ TK_ENDFOR, offset COMMAND__TK_ENDFDR, 2, \
(BB6BGEAD offset 2w i 2>

\BBGB6EAB struct_Command <offset a_ TK_CONTINUE, offset COMMAND__ TK_CONTIHUE, 2,\
(BEGB6EAD offset a_ v i 3>

.BB6BHEAB struct_Command <offset a_ TK_BREAK, offset COWMMAND__TK_BREAK, 2, \
\BB6BOERD offset a__w i N4>

(GB6BGERS struct_Command <offset a_ TK_GOTO, offset COMMAND_ TK_GOTOD, 2, \
.BB6BGEARD offset a__vi_ B>

'BBOBHEAD struct_Command <offset a_ TK_SWITCH, offset COMMAND __TK_SWITCH, 26h, \
(BBABSEAD offset a_ wvi j @8>

\BBGBGEARB struct_Command <offset a_ TK_ENDSWITCH, offset COMMAND T _EHDSWITCH, 8,%
(BB6B6ERD offset a_ v_ 1>

.BB6BHEAB struct_Command <offset a_ TK_CASE, offset COMMAMD T CRSE, B, \
(BB6BOERD offset a_ v _ 2>

\BBGBGEARD struct_Command <offset a_ TK_DEFAULT, offset COMMAMD TH _DEFAULT, 8, \
.BB6BGEARD offset a_ v_ 3>

(BBOBOEAD struct_Command <offset a_ TK_RETURM 8, offset COMMAND _TK_RETURH 8, B,\
(BB6BGEAR offset a_ v 4>

(BBGBGEAEB struct_Command <offset a_ TK_RETURN 1, offset COMMAND__TK RETURH 1, \
(BE6B6ERD 2, offset a__vi__ 1>

.BEGBAEAB struct_Command <offset a_ TK_RETURN 2, offset COMMAND__TK _RETURH 2, \
\BBOBGEAD G6oh, offset a_ wc_ B>

\BBOBGEARD struct_Command <offset a_ TK_RETURN 3, offset COMMAND__TK_RETURH 3, \
(BBGBAEAD 5ih, offset a_ vo_ 8>

(BBOBOEAD struct_Command <offset a_ TK_RETURMN_ 4, offset COMMAND _TK_RETURH &, \
(BB6BGEAD 8, offset a_ vs &>

.BB6BOERB struct_Command <offset a_ oprnull, offset COMMAND__ oprnull, 14h, Y\
(BOGAGEARD offset a_ ii_ 8>

.BBABOHERD struct_Command <offset a_ oprplus, offset COWHHAND__ oprplus, 15h, %
\BBOBGEAD offset a_ iii 8>

(BB6BGEARB struct_Command <offset a_ oprminus, offset COMMAND _ oprminus, 15h, \
(BBGBGEARD offset a 1iii 1>

And let me show you again the structure uncovered:

L L L b e b e b e e e d et ek e e kb
TSRS RS RELEYs]e]

00008888 struct_Command struc ; {sizeof=8x18)

AREEAAEA Command dd ¥ : offset

gefeedes FunctionfAddress dd 2 ; offset

00800088 UnknownUalue dd ?

fAARAAAC ParamaterPassing dd 2 ; offset
006666168 struct_Command ends

oopeeeie

I will talk with you about parameter passing to the functions. I did not debug any of those
functions and what I will explain next is only based on what I saw while cleaning up.

Let’s take a look at the following functions inside the GLOBAL_CommandList:

struct Command <offset a_ |
offset a__
struct_Command <offset a_ barkint, offset COMMAMD barkint, 2, %

a__barksty, offset COMMAMD barkstr, 8, \

a

a
offset a_ vi 3>

a

a

a

a

us 1>

struct Command <offset strtoi, offset COMHMAND strtoi, 610, %

offset a_ is_ @>
struct Command <offset a_ strlen, offset COMMAHD strlen, 61h, %
offset a_ is 1>

Let’s see, the command “barkstr” is followed by “vs”. The command “barkint” is followed by
“vi”, the command “strtoi” is followed by “is” and “strlen” is followed by “is”.

Do you also see the pattern emerging?

“strlen” and “strtoi” are taken straight from the C language, “strlen” returns the length of a
string and “strtoi” converts a string to integer like “Val” in Basic. The “bark” commands I'm
not sure what they do, but it is obvious for me that barkstr takes a string as parameter and
that barkint takes an integer as parameter.

What I deducted: strtoi —> is —> returns integer, takes string as parameter.
And: strlen —> is —> returns integer, takes string as parameter.

For barkstr: barkstr —> vs —> returns void, takes string as parameter.
For barkint: barkint —> vi —> returns void, takes integer as parameter.

Returning void is actually the same as returning nothing, C language to the rescue.

Let’s look at something else:

struct Command {offset a_ copylList, offset COMMAND copyList, 18h, %
offset a_ vlil 3>

struct_Command <{offset a_ sortlList, offset COMMAHMD _sortlList, 2kh, %
offset a_ vli 3>

There is a big chance “1” in “vII” and “vli” means list. “copyList” will copy a list to another
list and return void. “sortList” will operate on a list, takes a sort direction as extra parameter

and returns void.

It’s making sense, right?

Let’s continue:

struct Command <offset a_ isHuman, offset COMHAHD isHuman, 2Ch, \
offset a io 8>

struct Command {offset a_ isHobile, offset COMHAND isHobile, 2Ch,
offset a__io 9>

struct Command {offset a_isPlayer, offset COMHAND isPlayer, 2Ch, \
offset a io 18>

So, both functions take an object as parameter and will return an integer. The integer will
then indicate true or false.

struct Command <offset a get?ear offset COMHAWD getYear, 53h, Y\
offset a_ i 6>

struct Command <offset a __ge etHonth, offset COMMAND _getMonth, S53h, A
offset a_ i 1>

struct Command <offset a getweek, offset COMMAHD getWeek, 53h, \
offset a_ i 2>

struct Command <offset a __ge tnay, offset COMMAND qetDay, 53h, 3\
offset a__ i 3>

OK, everything really seems logic; those 4 functions only return an integer and take no
parameters.

And does C mean “location”:

struct Command <offset a getTllth offset COMMAMD getTileAt, 55h, %
offset a_ ic @8>

struct Command {offset a isInMap, offset COMMAHD isInMap, 55h,
offset a ic 1>

struct Command {offset a_ isInWorld, offset COMMAHMD isInWorld, 55h, \
offset a__ic 2>

Most probably: “yes”.

By cleaning up and applying knowledge and logic you can understand some of the things even
without understanding how everything works behind the hood.

We now know:

First character = Return value type.
The rest are parameter types and we know how many parameter each function takes.

1 = integer
o0 = object
¢ = location
v = void

There is also a “u”, which I think means “unsigned integer” but that has too proven by deeper
analyzing! This knowledge is going to come in handy while working on a script decompiler.

