
INSIDE THE ULTIMA ONLINE GOLD DEMO

 - THE COMMAND LIST – PART 2

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome does

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

BRAIN, every one has one, use it

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ In my 13
th
 year my mom won a PC, 286, in a local supermarket. It came with

MS-DOS 4.01 on big floppies. One day my mom asked me to continue a disk copy she had

started. You had to play disc jockey back then; the PC didn’t have enough memory to hold

the disk image. I got confused by the DISKCOPY program; my English wasn’t good yet and

didn’t know the difference between source and destination. I really remember panicking and

up to this day I believe I copied the destination to the source. Please, don’t tell my mom.

CONTINUATION

In Part 1 I showed you how I opened up the Command List. It’s a very important array used

by the scripting engine and it is really the gate for seeing how the UO Demo code works.

Plus, if the UO Demo code is directly based on the UO server code back then, well, 1 plus 1 is

2. In this part we continue the journey into the command list.

AFTER CLEANING UP

Now, I told you I needed to clean up the array to make it visually more attractive. I spent

more than a day on this job but it has been rewarding:

And let me show you again the structure uncovered:

PARAMETER PASSING

I will talk with you about parameter passing to the functions. I did not debug any of those

functions and what I will explain next is only based on what I saw while cleaning up.

Let’s take a look at the following functions inside the GLOBAL_CommandList:

Let’s see, the command “barkstr” is followed by “vs”. The command “barkint” is followed by

“vi”, the command “strtoi” is followed by “is” and “strlen” is followed by “is”.

Do you also see the pattern emerging?

“strlen” and “strtoi” are taken straight from the C language, “strlen” returns the length of a

sssstring and “strtoi” converts a sssstring to iiiinteger like “Val” in Basic. The “bark” commands I’m

not sure what they do, but it is obvious for me that barkstr takes a sssstring as parameter and

that barkint takes an iiiinteger as parameter.

What I deducted: strtoi -> is -> returns integer, takes string as parameter.

And: strlen -> is -> returns integer, takes string as parameter.

For barkstr: barkstr -> vs -> returns void, takes string as parameter.

For barkint: barkint -> vi -> returns void, takes integer as parameter.

Returning void is actually the same as returning nothing, C language to the rescue.

Let’s look at something else:

There is a big chance “l” in “vll” and “vli” means list. “copyList” will copy a list to another

list and return void. “sortList” will operate on a list, takes a sort direction as extra parameter

and returns void.

It’s making sense, right?

Let’s continue:

So, both functions take an object as parameter and will return an integer. The integer will

then indicate true or false.

OK, everything really seems logic; those 4 functions only return an integer and take no

parameters.

And does C mean “location”:

Most probably: “yes”.

CONCLUSION

By cleaning up and applying knowledge and logic you can understand some of the things even

without understanding how everything works behind the hood.

We now know:

First character = Return value type.

The rest are parameter types and we know how many parameter each function takes.

i = integer

o = object

c = location

v = void

There is also a “u”, which I think means “unsigned integer” but that has too proven by deeper

analyzing! This knowledge is going to come in handy while working on a script decompiler.

