
INSIDE THE ULTIMA ONLINE GOLD DEMO
 - THE PACKET COMMUNICATION – PART 1

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome does

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

HxD, a very neat hex editor and above all, it’s free

Explorer Suite, it did the job for this project but the tool can be improved

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ I really enjoy programming and I’ve done things in many languages. But there is

one language which I really dislike and I never ever want to use it again, let that monster be

named Java. Not sure why I don’t like it but it must be the first experiences I had with it, Java

1.0, I remember it being slow and I had no integrated editor for it. First impressions count

and it’s probably my fault that I can’t get over that first experience.

THEORY

If this demo is based on a real server and a real client than the protocol used to send data

between the client and server will be the same. The Ultima Online Protocol has been well

reversed and used to create custom servers and even custom clients

(http://en.wikipedia.org/wiki/Ultima_Online_shard_emulation).

So, if we can find out how the communication is done we could implement a patch to peek at

the data communication and this will prove or disprove that the communication is equal (or

similar) to the already reversed protocol.

It’s important to note that the communication between the official client and the official server

is being encrypted and that the protocol itself has seen some improvements over the years.

HOW TO LOOK

Now, where do you start to find such code? If you open the UoDemo with the Explorer Suite

you can look at the import table, you will find the WSOCKS API is being imported, however

when you run the demo and you use the “netstat” command to look for active sockets you will

find that UoDemo.EXE is not actively using the WinSock API. This suggests that the API is

there because of the original code but that another method is used to send the data between

client and server.

Screenshot of UoDemo.exe using Explorer Suite III:

There are many methods a programmer can use to send data internally. The most logical

choice is by using memory. If threads are used then we should find references to critical

sections. If you don’t know what critical sections are then stop reading now and study first.

I’m serious; every programmer must now what critical sections are.

http://en.wikipedia.org/wiki/Critical_sections

SEND USING SOCKET VERSUS SEND USING MEMORY

I’m not going to show you how I located the code but it isn’t that hard to find once you know

what to look for. On the following screenshot you can see that the UoDemo supports sending

to a socket and also sending to a memory object. However, the “send” call (at the bottom) is

never reached. Dream question: can we add code that will make it reach this point?

To get a deeper understanding we are going to explore the FUNC_MemoryTransfer_Write

and related functions (logic implies you cannot read what has not been written).

FUNC_MemoryTransfer_Write

The Write function, after analysis, is pretty straightforward:

If zero bytes are being sent, the function returns without doing anything. The data being sent

is placed into another object, which I named MemoryTransfer0C.

It’s the second part of the function that is more interesting, the critical section is entered, the

newly created MemoryTransfer0C object is added to a linked list and then the critical section

is left.

So, let’s take a look inside the MemoryTransfer0C constructor. This function, again, is easy

to follow, packet size is stored (ARG_Bytes) and a duplicate of the packet is made and stored

(new+memcpy). Plus the linked list pointer is set to NULL.

FUNC_MemoryTransfer_Read

The reading of the packets turned out to be a bit more different than writing then. I was

expecting to find code that would take the first MemoryTransfer0C object and unlink it from

the linked list (inside a critical section). Boy; was I wrong.

For clarity sake I split the screenshots in two parts, the first one (seen above) shows the

function entry and exit points. At entry the critical section is entered and at exit the critical

section is left. Basic stuff actually.

Turn to the next page to view the second screenshot displaying the actual code.

What going on is: the function is called with an address of a target buffer and a size of that

target buffer. Than as long as there is room inside that target buffer, the packets are copied

to the target buffer and removed from the linked list (and the MemoryTransfer0C object is

deleted).

CONCLUSION

Basically:

• the TransferMemory_Write function writes packet per packet

• the TransferMemory_Read function reads as many packets as possible

THE STRUCTURES INVOLVED

If you are going to do this yourself in IDA Pro, which I encourage, here are the structures I

unraveled:

2 object instances involved

During initialization the demo initializes two MemoryTransfer20 objects, one for
communication from the Client to the Server, another one for communication from the Server
to the Client.

Using IDA Pro’s cross reference function you can find out where the objects are used.

This concludes part 1. Really; do this cross reference stuff yourself ☺ or wait for future
“Inside The Ultima Online Demo” publishes.

