
INSIDE THE ULTIMA ONLINE GOLD DEMO
 - THE PACKET COMMUNICATION – PART 2

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome does

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

HxD, a very neat hex editor and above all, it’s free

Explorer Suite, it did the job for this project but the tool can be improved

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ I learned programming in BASIC, and then I switched to C and from there to

assembler. I think that’s the most logical order and I believe every one should learn to

program like that. BASIC because it’s easy, C because it’s a language where other languages

are based upon (C++, Java, C#, …) and at the same time you have to stay focused to avoid

buffer overruns (which I consider to be an important skill). Assembler will teach you how a

program works and it doesn’t open a door or a window, it opens a gategategategate to the inner workings

of your computer.

SMALL RECAPULATION

In part 1 of The Packet Communication we learned where and how the sending and receiving

of the packets is done (at the transfer level, not at the game level). Today’s goal is to insert

code to enable logging of these packets.

It’s my decision to use the log format of the Razor application. Razor is a macro utility for

free shards. This log format is clear text so files will become big quickly. I could have

chosen to create my own binary format which will be easier to implement but this means that

yet another log format would have been born. That my dear reader I wanted to avoid!

WHERE TO START THE PATCH

My first idea was to modify the constructor of the MemoryTransfer0C object, however; this

object is initialized before the critical section is entered. If we have two log files, one for

client to server and one for server to client, this wouldn’t be much of a problem. That is

however a silly idea.

Remember, we have to keep thread-safety into mind so it’s better to insert our code between

the EnterCriticalSection and LeaveCriticalSection calls.

Do you see place to insert code? I didn’t.

We can redesign the whole function and optimize it correctly to gain space. However, I took

a different approach. I replaced the call to LeaveCriticalSection with a call to inserted code

plus I added code to make sure we can use the fastcall.

WHAT IS FASTCALL

Fastcall is a calling convention like any other ☺. When using fastcall you are passing

variables through registers and not through the stack (which is faster, hence fastcall). Extra

reading: http://en.wikipedia.org/wiki/X86_calling_conventions#fastcall.

WHAT TO INSERT

The code we are adding in this patch is really big compared with previous patches so I

decided to code and test this in C. Remember, modern C compilers support 64-bit time_t

values, but due to its age the uodemo is limited to 32-bit. Luckily you can tell modern C

compilers to use the old-style time_t standard.

WARNING! With this patch I could be introducing the Year 2038 bug in the demo because of

using 32-bit time_t!

The actual C code is attached at the end of this document!

THE PATCH ENTRY

The screenshot below shows the modified FUNC_MemoryTransfer_Write function, notice the

added “XCHG EAX, EDX”:

The EAX will contain a pointer to the MemoryTransfer0C object, remember, that object

contains the pointer to the packet data and contains the packet size.

This is the called FUNC_LoggerEntry function (I added __Patch so I know during the

debugging sessions that it’s a patch that is being called):

I will clarify that function a bit; it looks odd if you don’t know assembler that well.

We know from the previous screenshot that EAX is used to pass the pointer to the

MemoryTransfer0C object, so the memory size and memory block (packet) is placed into

respectively ECX and EDX (fastcall at work again).

Then ARG_EIPofCaller_FarAway is put into EAX. This EIP is notnotnotnot the address of the

FUNC_MemoryTransfer_Write. It is the EIP of where FUNC_MemoryTransfer will return to.

That EIP will tell us whether it is the server code that is calling the write function or whether

it is the client code that is calling. This is important so the logger knows it should record

Server->Client or Client->Server. You cannot code ARG_EIPofCaller_FarAway in C without

the help of extra variables or assembler. This is the power of assembler at its best because

we have direct access to the stack.

GLOBAL_LogFunction is a pointer to the log function (stored in memory). The idea is: the

first time the function is called “LOGFILE” is looked up in the environment strings, if not

found we will replace GLOBAL_LogFunction with a call to a “nullsub”. If found we will

replace GLOBAL_LogFunction with a call to the log function. That way we don’t have to

check every time whether or not the log file has been opened. It’s a simply but effective

speed optimization technique.

THE LOG FILE INITIALIZATION

By default, GLOBAL_LogFunction points to FUNC_LoggerInit__Patch:

This is the actual function:

Notable things going on are:

1) EBX points to either “nullsub” or “FUNC_LoggerPacket_Patch” and is placed into

GLOBAL_LogFunction at the end

2) setlocale(LC_TIME, “”) is called, this makes the C API us your computers time

settings

3) strftime is used to convert the current time to a string

4) setlocale(LC_TIME, “C”) is called to restore the default C API settings (to minimize

interference with the uodemo (if time functions are used that is))

5) “SUB [ebp+EIP_Caller], 6” will re-execute “CALL GLOBAL_LogFunction”

THE LOGGING

This is the first part of the actual log function. Remember GLOBAL_LogHandle is not

checked against NULL because this function can only be called when it has been set.

In the first stage, EDI and ESI are used to point a string either “Server” or “Client”.

Depending on the EAX register (ARG_EIPofCaller_FarAway) they are swapped or not.

Instead of the C API “time(NULL)”, this time the Windows API “GetLocalTime” is used to

obtain the current time. Why? Because GetLocalTime returns the current millisecond

whereas the C API doesn’t return this value at all. In a later stage, EDI is used to contain the

log file handle (GLOBAL_LogHandle) and ESI points to a__S__ (which is “%s\r\n”).

This big screenshot shows the second part of the logger function:

I will not explain the function completely as it is based on the C code which you can see later

in this document.

Finally, the third and final part of the logger function:

Nothing much here, it will write a double “\r\n” and flush the file.

At this stage ESI points to a__S__ (which is “%s\r\n”), thus EAX = ESI + 2 = “\r\n“. This is

equal to “printf(LogHandle, “%s\r\n”, “\r\n”);”.

THE STRINGS

Some of the strings I needed to add for this project were really long and I had to look really

well where to add them. Later I will tell you how I did this.

For now, I’ll just show you the strings added:

FUNC_LoggerFixCharacter__Patch

The main loop contained code to replace non-standard ASCII strings with a dot, same as

Razor is doing. However, I needed more bytes so I had to place that code elsewhere and I

replaced it with a single call.

Before:

After:

I searched the EXE for empty space to place the code sequence “3c 20 72 04 3c 80 72 02 b0
2e c3”. I used the search string “c3 90 90 90 90 90 90 90 90 90 90 90 55”. This is a long
NOP sequence (alignment) between a RET and a PUSH.

After editing the EXE I used IDA Pro’s text search function to locate the modified code (I had
no clue where exactly I placed the function):

After removing the alignment directive and documenting:

Looks better, right?

THE C TEST CODE

#define _USE_32BIT_TIME_T
#include <windows.h>
#include <stdio.h>
#include <locale.h>
#include <time.h>

#pragma warning(disable : 4996)

static FILE *logfile = NULL;

enum DIRECTION
{
 RazorToServer, ClientToServer, ServerToClient
};

void LogPacket(DIRECTION PacketDirection, size_t Pa cketLength, const BYTE *PacketData)
{
 const char *LogText1 = " 0 1 2 3 4 5 6 7 8 9 A B C D E F";
 const char *LogText2 = " -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --";

 char LogLine[100];
 char Log8_1[8 * 3 + 1], Log8_2[8 * 3 + 1];

 // We must have an open logfile
 if(logfile == NULL)
 return;

 // Do not log empty packets
 if(PacketLength == 0)
 return;

 // Part 1
 {
 // Get the current time as string
 time_t t = time(NULL);
 GetLocalTime((LPSYSTEMTIME) LogLine); // (use L ogLine also for SYSTEMTIME)

 strftime(LogLine, sizeof(LogLine), "%X", localt ime(&t));

 // Verify the packet direction
 char *LogDirection1, *LogDirection2;
 switch(PacketDirection)
 {
 case ClientToServer: LogDirection1 = "Client" ;
 LogDirection2 = "Server" ;
 break;
 case ServerToClient: LogDirection1 = "Server" ;
 LogDirection2 = "Client" ;
 break;
 default: return;
 }

 fprintf(logfile, "%s.%04u: %s -> %s 0x%02X (Len gth: %u)\n%s\n%s\n", LogLine,
((LPSYSTEMTIME) LogLine)->wMilliseconds, LogDirecti on1, LogDirection2, PacketData[0],
PacketLength, LogText1, LogText2);
 }

 // Part 2
 unsigned int per16counter = 0;
 do
 {
 register unsigned int Log8len, MaxCounter;

 Log8len = 0;
 MaxCounter = PacketLength < 8 ? PacketLength : 8;
 for(register unsigned int Counter = 0; Counter < MaxCounter; Counter ++)
 {
 sprintf(Log8_1 + Log8len, "%02X ", PacketData [Counter]); // TEST
 Log8len += 3;
 }

 if(PacketLength > 8)
 {
 Log8len = 0;
 MaxCounter = PacketLength < 16 ? PacketLength - 8 : 8;
 for(register unsigned int Counter = 0; Counte r < MaxCounter; Counter ++)
 {
 sprintf(Log8_2 + Log8len, "%02X ", PacketDa ta[Counter + 8]); // TEST
 Log8len += 3;
 }
 }
 else
 Log8_2[0] = '\0';

 // sprintf returns the number of characters pri nted
 // KNOW YOUR API's AND RULE THE BINARY WORLD
 rnsigned int len = sprintf(LogLine, "%04X %-2 5s%-26s", per16counter, Log8_1, Log8_2);

 MaxCounter = PacketLength < 16 ? PacketLength : 16;
 for(Log8len = 0; Log8len < MaxCounter; Log8len ++)
 if(PacketData[Log8len] < 0x20 || PacketData[L og8len] >= 0x80)
 LogLine[len + Log8len] = '.';
 else
 LogLine[len + Log8len] = PacketData[Log8len];
 LogLine[len + Log8len] = '\0';

 fprintf(logfile, "%s\n", LogLine);

 per16counter += 16;
 PacketData += 16;
 PacketLength -= 16;
 }
 while((int) PacketLength > 0);

 // Part 3
 {
 fprintf(logfile, "\n\n");
 fflush(logfile);
 }
}

void OpenLog(void)
{
 // Open the log file
 register char *envstring = getenv("LOGFILE");
 if(envstring != NULL)
 logfile = fopen(envstring, "a");

 // Write log text
 if(logfile != NULL)
 {
 char LogTime[25];

 // Get the current time as string
 time_t t = time(NULL);
 struct tm *tm = localtime(&t);

 setlocale(LC_TIME, "");
 strftime(LogTime, sizeof(LogTime), "%c", tm);
 setlocale(LC_TIME, "C");

 fprintf(logfile, "\n\n\n>>>>>>>>>> Logging star ted %s <<<<<<<<<<\n\n\n", LogTime);
 }
}

ABOUT OPTIMAZATION TECHNIQUES

I had lot of problems with fitting the code inside the binary. So I had to relook how I

implemented to log function and I rewrote it a few times before all the bytes I needed fitted

in.

Remember, I optimized for size, not for speed!

Let’s take a look at some techniques I used:

1) Replacing “MOV reg32, 0xXXXXXXXX” with “PUSH 0xXX / POP reg32”

For example, “MOV EAX, 8” is assembled to “B8 08 00 00 00” (5 bytes)
Now, “PUSH 8 / POP EAX” becomes “6A 08 58” (3 bytes) (but slower!)

2) Not cleaning up the stack after every call

This is actually a technique also used by modern compilers, because it’s faster and
uses less code bytes. I only clean-up the stack inside the MainLoop because inside
there the stack is actually important and used with care.

3) locale(LC_TIME, “C”)

By default, this becomes:

…
PUSH offset a__C 68 XX XX XX XX
PUSH 5 ; LC_TIME 6A 05
CALL locale E8 XX XX XX XX
ADD ESP, 4 83 C4 04
…
a__C DB ‘C’, 0 43 00
� 5+2+5+3+2 = 17 bytes

 I implemented this with:

…
 PUSH ‘C’ 6A 43
 PUSH ESP 54
 PUSH 5 ; LC_TIME 6A 05

CALL locale E8 XX XX XX XX
 …

� 2+1+2+5 = 10 bytes

The trick is that “C” is a string consisting of 1 byte and 1 0-terminator. If you push
‘C’ (43 hex) on the stack then the value is zero extended on the stack and the stack
will actually contain “43 00 00 00”. Then ESP is pushed because ESP points to the
freshly created string on the stack.

The same trick is applied when calling “localtime(&t)”. Instead of placing the return-
value of time(NULL) into a variable and then calling localtime with a reference to that
variable, localtime is called directly after pushing EAX and pushing ESP (which
points to the pushed EAX). I hope I could explain?

4) I also replaced comparisons against a constant with a comparison against a register,
this takes one byte less in memory but you have to make sure the register contains the
right constant (without adding extra code to put a constant into the register!).

5) CMP equals SUB

This is something you should know, the CMP instruction is actually a SUB instruction
but with that difference the target register isn’t changed. That’s why you are seeing
Jxx instructions right after a SUB instruction.

mainloop: …

 CMP EAX, 16
 JBE endloop ; Jump if Below or Equal
 SUB EAX, 16
 JMP mainloop
endloop: …

 becomes:

mainloop: …
 SUB EAX, 16

 JA mainloop ; Jump if Above (=JNBE) (Jump if Not Below or Equal)
endloop: …

 NOTE: also the TEST instruction is actually an AND instruction (not used here)

6) Remember that the C API and Windows API preserve the EBX, EDI, ESI and EBP

registers. Make use of that fact! Never ever trust the contents of ECX or EDX after
calling an API. Know that most functions put their return values into EAX and
sometimes into the EDX:EAX pair.

Let’s take a closer look at the following code inside the main loop:

If you are looking at that code to understand it, I think you’re in hell.

I will help you.

“POP ECX” will put 8 into ECX. It is a constant I pushed on the stack earlier, at address

005ED13B to be exact. ESI points to a string on the stack (Log8_2 in the C Version). EAX is

then calculated by adding ECX to itself. EAX = ECX + ECX = 8 + 8 = 16. I could use “MOV

EAX, 16” (5 bytes) or the “PUSH / POP” trick (also 3 bytes), but I decided to use the LEA

version. Then EAX (16) is pushed on the stack for later usefor later usefor later usefor later use, it will be popped into ESI at

address 005ED192.

So, we know that ECX is 8 and EAX is 16. Then EDI ([EBP+arg_14] aka PacketSize) is

compared against EAX (16). We know that EAX is 16, so AL is 16 and AH is 00. Thus “MOV

[ESI], AH” equals “MOV BYTE PTR [ESI], 0” thus meaning “*Log8_2 = 0;” or “Log8_2[0] =

0;”. The “XCHG EAX, EDI” will put the value of 16 into EDI. After this function, when we

reach LOCAL_Ready2, the EAX register is no longer used. “SUB EDI, ECX” equals “SUB EDI,

8”, the loop will be skipped if EDI was below or equal to 8.

By the way, EBX is pointing to the packet data.

The readable (but binary longer) version of the code above is:

MOV ESI, offset Log8_2
MOV EDI, PacketSize
CMP EDI, 16
MOV BYTE PTR [ESI], 0
JBE LOCAL_Ready2
MOV EDI, 16

LOCAL_Ready2:
 CMP EDI, 8
 JBE LOCAL_SkipLoop2
 SUB EDI, 8
 PUSH EBX
 ADD EBX, 8

WHERE TO ADD THE CODE AND TEXT

Looking for empty space in an executable can be difficult but can also be easy if the

executable is compiled by following the rules.

You have to open the EXE with the Explorer Suite and view the section headers.

The Raw Size is the number of bytes a certain section takes inside the file. The Virtual Size

is the number of bytes in memory. If the Virtual Size is lower than the Raw Size, then it

means there is unused space (if the compiler is following the rules!).

So actually, you can see that have quite some unused space inside the UoDemo executable!

After inserting your code inside that space, do not forget to edit the section headers so it will

contain accurate values, which is important if you want to add code later again.

This is a screenshot of the modified section headers:

The red squares show the modified virtual sizes.

Note that the “.text” and “.rdata” are now completely full and can no longer grow! If we want

to add code in a future patch we either have to either remove code or insert an extra section!

BUG FOUND

Later when testing this code I discovered that I missed something in relation with thread-

safety. The bug itself (not deadly but annoying) is explained and solved in Part 3 of “The

Packet Communication” series.

