
INSIDE THE ULTIMA ONLINE GOLD DEMO

 - UODEMO.DAT

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome those

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

HxD, a very neat hex editor and above all, it’s free

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ I’ve been into computer starting from age twelve, and Ultima VII was the first

game I bought myself. Oh yeah, I’ve been programming since my 13 and I started with

assembler at age 15.

INITIAL LOOK

For the demo to work you must first install the Ultima Online Gold Client and then install the

demo. The demo requires the client to be installed and it doesn’t like newer clients, so my

suggestion is: install the UO client & demo inside a virtual machine. How to do this is beyond

the scope of this document and is left as an exercise for the reader.

Download the T2A era client from here: http://www.uosecondage.com/downloads.aspx, but do

not install the accompanied patch!

After installing the demo you will see 3 files, 2 files of them being important:

Opening UODEMO.EXE is promising, it contains many readable strings thus OSI did not use

encryption to protect their demo. However, UODEMO.DAT, contains 100% binary and

therefore we can be sure it’s compressed and/or encrypted somehow.

(left side = UoDemo.exe, right side = uodemo.dat)

BEFORE WE CONTINUE

Let’s not forget that the demo requires the client to be installed, that’s because the graphics

and sound are being loaded from the client itself.

INITIAL DISASSEMBLY

We load IDA and tell it to disassemble the demo executable.

Let’s start with looking for this UODEMO.DAT, we want to know where and how it loads.

STEP 1: open the list with labels and search for UODEMO

STEP 2: go to the label and follow the XREF

STEP 3: analyze what the code does, use the built-in debugger

This is a screenshot of the analyzed section:

If you look well there is a possible crash!

If the code reaches LABEL_AllocationFailureUODEMODAT the EBP is zeroed, nothing wrong

with that, but then EBP is stored in ECX. This is a standard (old) compiler mechanism; ECX

stores the content of the this-pointer for those who know C++. From this you can derive

that FUNC_MainOpenUODEMODAT is a class function.

Let’s look at FUNC_MainOpenUODEMODAT:

You notice that ECX is stored in [ebp+CLASS_UODEMODAT] and then that value is stored

back in EAX. Very silly code? Yes it is, this tells us that the compiler used is really old and

you should be amazed how compiler technology has improved. A modern C++-compiler with

optimizations enabled will never ever create such redundant code.

About the possible crash: “cmp dword ptr [eax+118h]” -> if EBP was zeroed, ECX will be

zero, [ebp+CLASS_UODEMODAT] will be zero and [eax+118h] will refer to [0+118h] and

that is an illegal address under win32 bit. Access Violation guaranteed!

Back, to the task at and, let us view the whole function:

There are some things going on which I didn’t analyze 100% yet.

You notice that at 004E27D1 (in orange) the returned file handle is stored in

[CLASS_UODEMODAT+118h]. That means the code at 004E2791 will only be executed

when this function is called and the file handle is non-zero. The file handle will only be non-

zero when the function has been called before. However, the XREFs teach us that this is not

the case in this demo!?

LABEL_OpenUODEMODAT_OK is called when the file was opened correctly. Please know

that UODEMO.DAT is opened by fopen and fopen does not support file sharing. Look up your

C documentation please. ☺

The following screenshot is inside this FUNC_LoadUODEMODATFileNameList (see the red

line on the previous one)

Important things to learn from this screenshot:

 Data is read into a buffer of 0x118 bytes at VAR_TemponaryBuffer.

 Data is XORed (the parameter 0x23 equals 0x118 / 4 / 2).

 The function stops when VAR_Temponary is equal to Str2.

 Str2 is not shown on the screenshot, but its content is “@@@.@@@”.

The next obvious step is to go analyze the FUNC_DeXORDataOrStg2:

And this is were at all became interesting, I’m not going to copy/paste the whole algorithm

here, but the values 0x1010101 and 0x1010104 I found so weird and interesting that I used

google to look them up. I reached a Russian forum that contained the source code of the

GOST cipher. That source code fitted into this main loop directly!

So, UODemo uses the GOST cipher, http://en.wikipedia.org/wiki/GOST_28147-89. For

implementations of the cipher try this google search:

http://www.google.com/search?q=gost+gostofb&meta=.

I’m sure that 10 years ago it would have been more difficult to discover this. But, what

saddens me is that other people have already decrypted the demo and they never published

this interesting fact. Come on people! Share you knowledge. Don’t take it with you when

you die. Aargh! Calm Blue Ocean. Calm Blue Ocean.

With the information we have now, we can actually write a utility that will decrypt this

UODEMO.DAT file.

NOTE: the UoDemo only supports up to 3000 files (look at the disassembly yourself to verify

this)

An idea I have: remove the encryption code from the demo and have it operate on an

unencrypted version of UODEMO.DAT named UODEMO.BIN (for example).

That’s it for now, I got bored of writing. Back to code please.

