
INSIDE THE ULTIMA ONLINE GOLD DEMO

 - UODEMO.DAT versus DIRECT FILE ACCESS

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome those

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

HxD, a very neat hex editor and above all, it’s free

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ I’ve been into computer starting from age twelve, and Ultima VII was the first

game I bought myself. The “coolest” thing I ever did may well be the patch described in this

document, but the “coolest” thing I did 15 years ago happened in school. I was reading about

viruses because I wondered how they worked. Back then I discovered how to write programs

with DEBUG.COM (MSDOS application). So instead of attending the lessons and doing boring

exercises I was fooling around in assembler. I once patched COMMAND.COM so it would

display a welcome message every time the computer started, much like a virus would patch

COMMAND.COM :=). The patch didn’t last long, I was very afraid to get caught so I removed

it at the end of the 2 hour lesson. But it worked my dear reader ☺.

STRUCTURES

I have already uncovered how UODEMO.DAT is encrypted and in the mean-time I delved

deeper in the code and documented more functions and structures involved. I’m going to

share you my work.

I start by showing you the (internal) structures I partially analyzed:

Even though I called them “struct”, they are more likely to be classes but know that a C++

class is nothing more than an advanced structure under the hood.

“struct_UODEMODAT” is an internal structure and most importantly it contains an array of

3000 header structures. This means that the UO Demo supports only up to 3000 files stored

in UODEMO.DAT.

“struct_DAT_HeaderEntry” is exposed to the real world in its encrypted form. To learn how

to decrypt the structures you will have to read my first document about UODEMO.DAT. Note

that the filename is an array of 260 characters (bytes). 260 is a magic value in the Windows

world as it’s defined as MAXPATH. Very bad btw because NTFS supports longer filenames

but due to this limitation very few software can work with longer filenames, even the crappy

Windows Explorer can’t handle those!

“struct_ContainerHandle” is another internal structure; it is used when reading data from

UODEMO.DAT. As you can see, I didn’t document all fields yet. The files are handled in

blocks of 64KB and some of those fields seem to indicate which block is currently in memory.

Please note that UODEMO.EXE also supports writing to UODEMO.DAT.

“struct_UODEMODATembedded” is still a complete mystery. It looks like an embedded C++

object but I couldn’t derive its function yet.

FOPEN

The UODEMO.DAT contains a function at address 0x004E5CFA that is called every time the

demo wants to open a file. The function will return a pointer to a struct_DAT_HeaderEntry

variable.

Screenshot of the start of this function which I named FUNC_fopen_ServerSide:

The function also does something interesting, the ARG_Filename is a function argument and is

converted to a lower-case string and “.q” is added, this result is stored in

VAR_FilenameWithQ. After that the ARG_OpenMode is also modified a bit, but nothing

important.

Screenshot of the ending of FUNC_fopen_ServerSide:

The image on the previous page required a devoted page because it’s a very important

screenshot.

Do you know assembler? Then look at the red square and you will completely understand

why I put a question mark there. You don’t know assembler? Then read on.

Now, what’s going on is: FUNC_fopen_Container is called, this name is a bit misleading

because UODEMO.DAT is already open but that function will return the address of a

struct_DAT_HeaderEntry if the file is found in UODEMO.DAT, otherwise NULL is returned.

The return value, the address, is stored in the EAX register which is then copied to the ESI

register. Now if ESI is 0 then a jump is made to LOCAL_ReturnZero which will return to the

caller and the demo will fail because the file couldn’t be opened. Then 1 is put into EBX,

notice that EBX was zeroed before the call (orange squares). Then a zero test is made again

on the ESI register but this time a jump is made to LOCAL_RegisterAsThroughContainer if

ESI isn’t zero.

But we already know that ESI isn’t zero because of the first test!

That made me think there was code sitting around that has been removed from the final build,

this idea has been in the back of my head since the first time I started working on the

UODEMO and noticed that ESI test.

Now, we also know that EBX will always be 1! All files that are needed by UODEMO are

stored in UODEMO.DAT so why is EBX zeroed out first? That’s really an indicator that there

was extra code that we don’t see anymore.

Another interesting fact, look at the _strstr call at address 0x004E5DF1. So if the

VAR_FilenameWithQ does not contain “.q” then the ESI parameter is returned without

executing the rest of the code. But we know that “.q” is added always! So why is there an

extra check at the end? What in God’s name or Allah’s name, is that code doing there. It’s

really not necessary. But it is necessary if code exists that would accesses files without

UODEMO.DAT!

Also, let’s take a look at the EDI register, it will be 1 if the modified access mode does not

contain “w” or a “+”. This is C stuff and basically if EDI is zero then the file is writeable; if

EDI is 1 then the file is read-only.

After that, memory for a struct_ContainerHandle is allocated and this structure/object is

initialized. 3 important parameters, EBX, EDI and ESI! EBX = 1 (because we read from

UODEMO.DAT), EDI is a read-only/writeable indicator and ESI is the address of the header

entry.

FCLOSE

This is the function that will close files opened by FUNC_fopen_ServerSide:

This is very interesting and again, did no one notice this before? What is _fclose doing there?

Files are never opened directly from disk but always from UODEMO.DAT, so why is a _fclose

needed?

Know that FUNC_fclose_ServerSide takes a struct_DAT_HeaderEntry as parameter.

Know that _fclose takes a FILE as parameter (C documentation).

Know that FUNC_fclose_Container__WithFlush takes a struct_ContainerHandle as parameter.

FGETS

This is the function that gets called when a text file is being handled, for example server.txt:

If you don’t know what “fgets” does then google or learn the C language.

The same comments of FUNC_fclose_ServerSide apply to this function! What is _fgets doing

there!?

Know that FUNC_fgets_ServerSide takes a struct_DAT_HeaderEntry as parameter.

Know that _fgets takes a FILE as parameter (C documentation).

Know that FUNC_fgets_Container takes a struct_ContainerHandle as parameter.

DOING THE MATH

Two plus two is one. Sorry, it’s one plus one is two.

Now what’s going on is: both FUNC_fclose_ServerSide and FUNC_gets_ServerSide call a

function sub_4E557A. If this function returns NULL then the C functions (fgets/fclose) are

called directly with the same parameter as sub_4E557A was called with. If the function didn’t

return NULL than the FUNC_..._Container functions are called. Because the

FUNC_..._Container functions take a struct_ContainerHandle as parameter we can derive that

sub_4E557A returns a struct_ContainerHandle which will be NULL if it can’t find the

struct_DAT_HeaderEntry.

Now I also looked at sub_4E557A and there stuff going which is related with calls made by

FUNC_Init_ContainerHandle (see FUNC_fopen_ServerSide). So when

FUNC_fopen_ServerSide returns a header entry, this header entry will have been linked

internally with a struct_ContainerHandle by FUNC_Init_ContainerHandle. Remember that if

the file name doesn’t contain “.q” no struct_ContainerHandle will be initialized! But we also

know that a file without “.q” will never be found in UODEMO.DAT so the demo will always

fail.

Remember that we had that red square with weird code? Well, I think there was code that

would call _fopen and return a FILE handle instead of a struct_DAT_HeaderEntry. I wanted to

test this by adding a call to _fopen and I tested it.

You know what? IT WORKED!

GIVE ME SPACE

There is obviously not enough space to add calls to fopen and so-on. This isn’t the same as

patching a jump or something; we’re going to add real code.

I found this function:

Yes, it’s a rename function. So somehow the demo has support for renaming files, is this
code from the OSI servers? The xrefs tells us that this function is never used inside the demo.
That’s why I decided to overwrite that function with my own code.

THE PATCH – PART 1

Here’s my “modified” rename function:

This code will:

1) call FUNC_fopen_Container
2) on success, return
3) on failure, call fopen
4) on failure, return
5) on success, remove “.q” from the filename (very important to make this work)
6) return

THE PATCH – PART 2

Even though we now have created a cool function that will call _fopen, we still need to make
the demo call this new function.

This is done in FUNC_fopen_ServerSide.

Before:

After:

NOTE: the color is different because the second picture was taken while the debugger was
active

ADDITIONAL NOTE: don’t think I didn’t see the demo crash, it took me several tries to
make it right, and the first time I didn’t remove the “.q” which gave weird results ☺. Also
when you do this, make sure you operate on a correct “.rundir”, a corrupt “.rundir” will kill
the beast most likely.

HOW TO MAKE IT WORK

You can now go ahead and patch your uodemo.exe (or uodemo+.exe).

But this will never work unless you modify uodemo.dat (or uodemo+.dat). The fopen
function will only be called if the file isn’t found inside the DAT archive/container.

You can create an empty uodemo.dat, a 0-bytes long/short DAT file will not crash the demo.

An extra patch will be required to remove UODEMO.DAT completely, that’s an exercise for
you my dear.

