INSIDE THE ULTIMA ONLINE GOLD DEMO
- UODEMO.DAT versus DIRECT FILE ACCESS

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This
demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,
however so far no tools or knowledge has been published. This project is to overcome those
shortcomings.

URL’s with some proof for this:
http://www.runuo.com/forums/general-discussion/94767-help—m-files.html
http://azaroth.org/2008/12/31/your—topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our
own demo. By default mounting horses is not possible in the demo, but what if we can alter
the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that
DMCA thing is in the way?

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.
HxD, a very neat hex editor and above all, it's free

I'm just a guy who loves the Ultima universe and knows a bit assembler. Why not combine
the two? © I've been into computer starting from age twelve, and Ultima VII was the first
game [bought myself. The “coolest” thing I ever did may well be the patch described in this
document, but the “coolest” thing I did 15 years ago happened in school. [was reading about
viruses because I wondered how they worked. Back then I discovered how to write programs
with DEBUG.COM (MSDOS application). So instead of attending the lessons and doing boring
exercises [was fooling around in assembler. I once patched COMMAND.COM so it would
display a welcome message every time the computer started, much like a virus would patch
COMMAND.COM :=). The patch didn’t last long, I was very afraid to get caught so I removed
it at the end of the 2 hour lesson. But it worked my dear reader ©.

STRUCTURES

[have already uncovered how UODEMO.DAT is encrypted and in the mean-time I delved
deeper in the code and documented more functions and structures involved. I'm going to
share you my work.

[start by showing you the (internal) structures I partially analyzed:
B000006EA struct DAT_HeaderEntry struc ; {(sizeof=0x2118)
foeeEees FileHame db 268 dup(?) ; string(C)
GoaaE16, PointerToFileData dd 7

AOAA01688 ReservedSize? dd 7

gogegiec IsReadOnly dd ?

068068119 StoredSize dd 7

FEEes114 CurrentPosition dd 2

00066118 struct _DAT _HeaderEntry ends

aggaa118

#gg@@HHl ; - ——————————_—_——————
iggoaBee

BEAABEAA struct ContainerHandle struc ; {sizeof=8x2C}
0e0e00680 ContainerID dd ¥

f98984984 MemoryBlock dd ?

BopEeeEes field 8 dd 7

BOBEBBEC field C dd %

BeeEAe18 CurrentPosition dd %2

BEREE6E1L field 14 dd 7

BEAEEET8 OriginalLength dd #?

ABABEE1C ActuallLength dd 7

jopeeeZe field 28 dd ?

popeasz2Lk field 24 dd 7

BOBEB628 AccessThroughContainerCode dd 7

BOB6EBB2C struct ContainerHandle ends

gpaaeR2e

BEEEAEEE -
gpoBooBo

BEAABEAA struct UODEMODAT struc ; {sizeof=8xCD274)

fopoooes field A dd 78 dup(?)

AAAAA118 FileHandleToUODEMODAT dd 7

B0688611C embedded struct UODEHMODATembedded %
BOB6E6812C HeaderList struct DAT HeaderEntry 38808 dup{?}
BaBCh24C HeaderCount dd ¢

BEBCD2768 PointerToBeginOfDatafdrea dd 7
BEBCDZ74 struct UODEMODAT ends

BABCD274

gpeBAEER ;
faaBAAAA

BOEEBE8E struct UODEMODATembedded struc ; (sizeof=8x18)

BOBEOBGEE field A dd ?

BO0A00R6EL Field & dd ?

BOEEBA6E field 8 dd ?

BOREBEBC field C dd %

AO8RO810 struct_UODEMODATembedded ends

Even though I called them “struct”, they are more likely to be classes but know that a C++
class is nothing more than an advanced structure under the hood.

“struct_UODEMODAT?” is an internal structure and most importantly it contains an array of
3000 header structures. This means that the UO Demo supports only up to 3000 files stored
in UODEMO.DAT.

“struct_DAT_HeaderEntry” is exposed to the real world in its encrypted form. To learn how
to decrypt the structures you will have to read my first document about UODEMO.DAT. Note
that the filename is an array of 260 characters (bytes). 260 is a magic value in the Windows
world as it’s defined as MAXPATH. Very bad btw because NTFS supports longer filenames
but due to this limitation very few software can work with longer filenames, even the crappy
Windows Explorer can’t handle those!

“struct_ContainerHandle” is another internal structure; it is used when reading data from
UODEMO.DAT. As you can see, [didn’t document all fields yet. The files are handled in
blocks of 64KB and some of those fields seem to indicate which block is currently in memory.
Please note that UODEMO.EXE also supports writing to UODEMO.DAT.

“struct_UODEMODATembedded” is still a complete mystery. It looks like an embedded C+ +
object but I couldn’t derive its function yet.

The UODEMO.DAT contains a function at address OxO04E5CFA that is called every time the
demo wants to open a file. The function will return a pointer to a struct_DAT_HeaderEntry
variable.

Screenshot of the start of this function which I named FUNC_fopen_ServerSide:
BBUESCFA ; ====ssss======= S U B R 0O UT] HE =ssssssssssssscscensmcomomssssssnsnsasns
BB4ESCFA

BB4ESCFA

BB4ESCFA FUNC fopen_ServerSide proc near
BB4ESCFA

BB4ESCFA

BO4ESCFA VAR ModifiedAccessiode= byte ptr -4%1Ch
BO4ESCFA VAR AllocatedMemoryForContainerHandle= dword ptr -418h
BO4ESCFA VAR FilenameWithQ= byte ptr -4BCh

CODE ¥REF: sub_48187D+2DTp
sub_43361F+145Tp ...

BB4ESCFA var C = dword ptr -8Ch

BOL4ESCFA var_ 4 = dword ptr -4

BB4ESCFA ARG Filename = dword ptr &4

BO4ESCFA ARG_Openiode = dword ptr 8

BO4ESCFA

BB4ESCFA nou eax, large fs:8

BB4ESD BB push BFFFFFFFFh

BO4ESDB2 push offset unknown libname 691 ; Hicrosoft UisualC 2-8/net runtime
BB4ESDBY push Bax

BB4ESD B8 moy large fs5:8, esp

BBLESDBF sub esp, 416h

BB4ESD15 or ecx, BFFFFFFFFh

BB4ESD18 ®or eax, eax

BB4ESD1A push ehx

BB4ESD1B push ebp

BBLESDAC push esi

BB4ESDAD push edi

BBLESDAE mou edi, [esp+42Ch+ARG_Filename]
BB4ESD25 lea edx, [esp+42Ch+UAR_FilenameWith(]
BB4ESD29 repne scash

BB4ESD2B not BCx

BO4ESD2D sub edi, ecx

BBUESD2F mou fax, PCH

BA4ESD31 mou esi, edi

BA4ESD33 mou edi, edx

BBLESD3S shr PCX, 2

BB4ESD38 rep movsd

BBLESD3A mov PCX, Pax

BBLESD3C and ecx, 3

BB4ESD3F rep movsh

BBLESDY lea ecx, [esp+42Ch+UAR_FilenameWith]
BBLESDYS push ecx ; String
BBUESDUG call strluwr

The function also does something interesting, the ARG_Filename is a function argument and is
converted to a lower—case string and “.q” is added, this result is stored in
VAR_FilenameWithQ. After that the ARG_OpenMode is also modified a bit, but nothing
important.

Screenshot of the ending of FUNC_fopen_ServerSide:

B84ESDBD
BB4ESDBD
BO4ESDED
BB4ESDCA
BB4ESDCS
BO4ESDCG
BB4ESDCY
BB4ESDCD
BO4ESDCF
BBLESDDLY
BB4ESDDG
BO4ESDDE
BB4ESDDA
BB4ESDDC
BB4ESDEA
BB4EGDE3
BB4ESDE3
BB4ESDE3
BB4ESDES
BB4ESDEY
BO4ESDE?
BB4ESDE7
BB4ESDEY
BO4ESDEB
B84ESDF A
BB4ESDF1
BB4ESDF 6
BO4ESDFQ
BB4ESDFB
BB4ESDFD
BB4ESEQQ
BB4ESE B2
BO4ESE B4
BB4ESE 86
BB4ESE 87
BB4ESE BC
BB4ESE BF
BO4ESE11
BB4ESE13
BOYEGE1S
BO4ESE16
BO4ESE1B
BO4ESETE
BO4ESE20
BB4EGE22
BO4EGE22
BO4ESE22
BO4ESE24
BB4ESE26
BB4ESE26
BOLESE26
BB4ESE26
BB4ESE26
BB4ESE2B
BO4ESE2B
BO4ESE2B
BB4ESE2D
BB4EGE32
BO4ESE3S
BB4ESE3?
BB4ESE3B
BB4ESELG
BO4ESELS
BO4EGELD
BB4ESE4A
BB4ESE4B
BO4ESE4D
BB4ESEL2
BB4EGES2
BO4ESES2
BB4ESES2
BB4ESES2
BO4ESESHY
BB4EGESL
BO4ESESL
BO4ESESE
BB4ESESC
BO4ESESD
BO4ESESE
BB4EGEAS
BB4ESEGG
BO4ESEGE

loc_ 4ES5DEBD: ; GODE XREF: FUHC_fopen_ServerSide+aDtj
1lea eax, [esp+42Ch+UAR_HModifiedAccessHode]
1lea ecx, [esp+42Ch+UAR_FilenameWith(]
push eax ; Hode
push BCX ; Filename
mou ecx, GLOBAL_Class_ UODEMODAT
®OF ebx, ebx
Container
851, e51
short LOCAL_ReturnZero
test esi, esi
mov ebx, 1 Q)
jnz short LOCAL RegisterfsThroughContainer
LOCAL_ReturnZero: ; CODE XREF: FUHC_fopen_ServerSide+DET]
®or eax, eax
jmp short LOCAL Return
s i o o
LOCAL RegisterAsThroughContainer: ; GODE XREF: FUHC_fopen_ServerSide+E7Tj
1lea edx, [esp+42Ch+UAR_FilenameWith(]
push offset a q < |
push edx 5 REF
call _strstr
add esp, 8
test eax, eax
jz short LOCAL_ReturnHandleWithoutInitContainerHandle
moy cl, [eax+2]
test cl, cl
jnz short LOCAL ReturnHandleWithoutInitContainerHandle
push 2Bh ; '+! ; Ual
push ebp ; BXr
call _strche
add esp, 8
test eax, eax
jnz short LOCAL RegisterfsReadinly
push 77h 53 'w!' ; Val
push ebp ; Str
call _strchi
add esp, 8
test eax, eax
jnz short LOCAL RegisterAsReadOnly
LOCAL_RegisterAsWriteable:
xor edi, edi
jmp short loc_ A4ESE2?B
| EEEEEE G S S
LOCAL RegisterfsReadOnly: ; CODE XREF: FUHC_fopen_ServerSide+117Tj
; FUMC_fopen_ServerSide+126Tj
moy edi, 1
loc 4ESE2B: ; GODE XREF: FUNC_fopen_ServerSide+i2alj
push 280 "
call PP2EVAPAN IEZ ; operator new{uint)
add esp, 4
moy [esp+42Ch+var_418], eax
test eax, eax
moy [esp+42Ch+var_ %], @
iz short LOCAL ReturnHandleWithoutInitCoentainerHandle
push ebx
push
mou BCX, Bax
call FUHC_Init ContainerHandle
LOCAL ReturnHandlelitheutInitContainerHandle:
; CODE XREF: FUMC_fopen_ServerSide+181Tj
; FUNC_fopen_ServerSide+188Tj ...
Imuu eax, esi I
LOCAL Return: ; GODE XREF: FUHC_fopen_ServerSide+EBTj
mou ec®, [esp+42Ch+uvar C]
pop edi
pop esi
pop ebp
moy large fs:B, ecz
pop ebx
add esp, 41c€h
retn

BB4ESEGC FUNC_fopen_ServerSide endp

The image on the previous page required a devoted page because it's a very important
screenshot.

Do you know assembler? Then look at the red square and you will completely understand
why I put a question mark there. You don’t know assembler? Then read on.

Now, what’s going on is: FUNC_fopen_Container is called, this name is a bit misleading
because UODEMO.DAT is already open but that function will return the address of a
struct_DAT_HeaderEntry if the file is found in UODEMO.DAT, otherwise NULL is returned.

The return value, the address, is stored in the EAX register which is then copied to the ESI
register. Now if ESI is O then a jump is made to LOCAL_ReturnZero which will return to the
caller and the demo will fail because the file couldn’t be opened. Then 1 is put into EBX,
notice that EBX was zeroed before the call (orange squares). Then a zero test is made again
on the ESI register but this time a jump is made to LOCAL_RegisterAsThroughContainer if
ESI isn’t zero.

But we already know that ESI isn’t zero because of the first test!

That made me think there was code sitting around that has been removed from the final build,
this idea has been in the back of my head since the first time I started working on the
UODEMO and noticed that ESI test.

Now, we also know that EBX will always be 1! All files that are needed by UODEMO are
stored in UODEMO.DAT so why is EBX zeroed out first? That’s really an indicator that there
was extra code that we don’t see anymore.

Another interesting fact, look at the _strstr call at address OxO04E5DF1. So if the
VAR_FilenameWithQ does not contain “.q” then the ESI parameter is returned without
executing the rest of the code. But we know that “.q” is added always! So why is there an
extra check at the end? What in God’s name or Allah’s name, is that code doing there. It's

really not necessary. But it is necessary if code exists that would accesses files without
UODEMO.DAT!

Also, let’s take a look at the EDI register, it will be 1 if the modified access mode does not
contain “w” or a “+”. This is C stuff and basically if EDI is zero then the file is writeable; if
EDI is 1 then the file is read-only.

After that, memory for a struct_ContainerHandle is allocated and this structure/object is
initialized. 3 important parameters, EBX, EDI and ESI! EBX = 1 (because we read from
UODEMO.DAT), EDI is a read-only/writeable indicator and ESI is the address of the header
entry.

This is the function that will close files opened by FUNC_fopen_ServerSide:

BB4ESFSA
BB4ESFSA
BB4ESFEA
BB4ESFSA
BBY4ESFSA
BB4ESFSA
GB4ESFSA
BB4ESFSA
BB4ESFSA
BB4ESFSE
BBY4ESFSC
BB4ESF6 0
BBYESF 61
BBYESF 66
GBY4ESF 68
BB4ESF 6B
BBYESF 6D
BB4ESFGF
BB4ESFY A
BBYESF 7S
BBYESF7E
BBYESF7Q
GB4ESF7A
BB4ESF 7B
BB4ESF7B
BB4ESF7R
BBY4ESF7B
BBYESF7D
GBY4ESFE2
BB4ESF 8L
GBYESFEG
BB4ESFEE
BB4ESFEC
BO4ESF 91
BO4ESF oL
BBYESF 96
GBYESF 97
BB4ESF 98
GB4ESF 98

smm==mmm======= S U B RO U T 1 HE

FUNG_fclose_ServerSide proc near

FileHandleOrFilename= dword ptr &

CODE XREF: sub_48187D+139Tp
sub_4834EB+17Tp ...

push esi
push edi
mou edi, [esp+8+FileHandleOrFilename]
push edi
call sub 4ES57A
mou 851, eax|
“add esp, &
test esi, esi
inz short loc 4ESF7B
push edl ; File
call fclose
add esp, 4
pop edi
pop esi
retn

loc_MESF7B: ; CODE XREF: FUHC fclose_ServerSide+137Tj
mou ecx, esi
call FUNC_fclose Container_ WithFlush
mou ecx, esi
mou edi, eax
call sub BESOFA
push esi ; Hemory |
call TRIEYAXPAXES ; operator delete{void =}
add esp, 4
mou eax, edi
pop edi
pop esi
retn

FUNC fclose ServerSide endp

This is very interesting and again, did no one notice this before? What is _fclose doing there?
Files are never opened directly from disk but always from UODEMO.DAT, so why is a _fclose

needed?

Know that FUNC_fclose_ServerSide takes a struct_DAT_HeaderEntry as parameter.
Know that _fclose takes a FILE as parameter (C documentation).
Know that FUNC_fclose_Container__WithFlush takes a struct_ContainerHandle as parameter.

This is the function that gets called when a text file is being handled, for example server.txt:

T st BT o el T 1 R VR T I e B s) e e e e e e e e e e e e e e
BB4ESF oA

BB4ESF9A

BB4ESF9A FUNC _fgets ServerSide proc near : CODE XREF: sub_48187D+78Tp
BO4ESFA ; COMHAMD initArrayFromFile+9aTp ...
BO4ESF oA

BOLESF?A Buf = dword ptr &

BALESF?A MaxCount = dword ptr &

BB4ESF9A FileHandleDrFilename= dword ptr BCh

BB4ESF9A

@O4ESF2A push esi

BOL4ESF9B moy esi, [esp+i+FileHandlelriFilename]

BE4ESFOF push esi

HO4ESFAA call sub 4EGS7A

BB4ESFAS add esp, 4

BB4ESFAS test eax, eax

OO4ESFAR dnz____short loc ESFCA)

BBLESFAC mou eax, [esp+i+HaxCount]

BBLESFER mou ecx, [esp+i+Buf]

BO4ESFBY | push £S5l : File |

AA4MESFBS push eax ; MaxGCount

BB4ESFBG push BCX ; Buf

BA4ESFBT call _fgets

GO4ESFBC add esp, BCh

B84ESFBF pop esi

BB4ESFCA retn

S I e e
BB4ESFCI

BA4ESFC1 loc 4ESFCA: ; CODE XREF: FUNC fgets ServerSide+18Tj
BA4ESFCA mov edz, [esp+i+MaxCount]

BA4ESFCS mov ecx, [esp+i+Buf]

BOL4ESFCY push edx

OO4ESFCA ush ecx

BOMESFCB mou ecx, eax 1

BALESFCD .gall FUHq_fgetSWEuntqiﬂgf

884ESFD2 pop esi : —

BB4ESFD3 retn

BB4ESFD3 FUHC_fgets ServerSide endp
If you don’t know what “fgets” does then google or learn the C language.

The same comments of FUNC_fclose_ServerSide apply to this function! What is _fgets doing
there!?

Know that FUNC_fgets_ServerSide takes a struct_DAT_HeaderEntry as parameter.
Know that _fgets takes a FILE as parameter (C documentation).
Know that FUNC_fgets_Container takes a struct_ContainerHandle as parameter.

Two plus two is one. Sorry, it's one plus one is two.

Now what’s going on is: both FUNC_fclose_ServerSide and FUNC_gets_ServerSide call a
function sub_4E557A. If this function returns NULL then the C functions (fgets/fclose) are
called directly with the same parameter as sub_4E557A was called with. If the function didn’t
return NULL than the FUNC_..._Container functions are called. Because the
FUNC._..._Container functions take a struct_ContainerHandle as parameter we can derive that
sub_4E557A returns a struct_ContainerHandle which will be NULL if it can’t find the
struct_DAT_HeaderEntry.

Now I also looked at sub_4E557A and there stuff going which is related with calls made by
FUNC_Init_ContainerHandle (see FUNC_fopen_ServerSide). So when
FUNC_fopen_ServerSide returns a header entry, this header entry will have been linked
internally with a struct_ContainerHandle by FUNC_Init_ContainerHandle. Remember that if
the file name doesn’t contain “.q” no struct_ContainerHandle will be initialized! But we also
know that a file without “.q” will never be found in UODEMO.DAT so the demo will always
fail.

Remember that we had that red square with weird code? Well, I think there was code that
would call _fopen and return a FILE handle instead of a struct_DAT_HeaderEntry. I wanted to
test this by adding a call to _fopen and I tested it.

You know what? IT WORKED!

There is obviously not enough space to add calls to fopen and so—on. This isn’t the same as
patching a jump or something; we're going to add real code.

| found this function:

HALERADR: = S=====ss=sscaamrn BRI T HUE SE=EEEEE s s sEEtaaananaEEEaaRRaaaas
BB4E68DA

BO4E6B8DA

G84EGBDA FUMC rename_ServerSide proc near

BO4E68DA

BO4EGBDA var_ 288
BO4EGADA var 164
BO4EGBDA DldFilename
BB4E6BDA HewFilename

byte ptr -Z288h
byte ptr -184h
dword ptr &
dword ptr 8

BA4EG BDA

B84EG6BDA sub esp, 288h

BB4EGBEQ push ebhx

BAL4EGBE1 mou ebx, [esp+2BCh+HewFilename]
BB4EGBES push edi

BB4EGBED moy edi, [esp+21Bh+01dFilename]
BBLEGBF A push ebx ; HewFilename
BB4EGBF1 push edi ; D1dFilename
BB4EGBF 2 call _rename

BAUEGBFF add esp, &

BBUEGBFA test eax, eax

BALEGBFC jnz short loc_4E6187

BALEO BFE e - .

BBLEG OFF warning x|
BA4E61 808

BA4EG1 86 & There are nocarefz o FUNC rename; ServerSide

BALEG1R7 [——————— el e
BO4EG187

BB4EG187 loc 4EGT1E FUNC_renane_ServerSide+221j
BA4EG1 87

AA4EG610A xor eax, eax

BB4E618C repne scash

B84EG618BE not ecx

BA4EG110 sub edi, ecx

BBL4EG112 push esi

BB4E6113 lea edx, [esp+214h+var 184]
BB4EG11A mov eax, BCX

BA4EG1AC mou esi, edi

BB4ES11E mou edi, edz

BB4EG1ZB shr ecx, 2

BA4EG123 rep mousd

BBLEG1Z5 mau eC¥, eax

BBUEG1ZT Xor eax, eax

BBLEG129 and ecx, 3

AA4MEG12C mou dl, byte ptr a q 1+2

Yes, it's a rename function. So somehow the deasoskipport for renaming files, is this
code from the OSI servers? The xrefs tells ustthatfunction is never used inside the demo.
That's why | decided to overwrite that function wihy own code.

Here’s my “modified” rename function:

BB4EG BDA FUNC_rename_ServerSide:
ABLEGBDA 55 push
BBLEGBDB 89 ES moy
BBLEGBDD FF 75 aC push h
GBLEGBED FF 75 B8 push dword pty [ebp+2]
GBLEGBE3 E8 15 CF FF FF call FUNC_fopen_Container
BOLEGBES 43 inc ebx
BBLEGBEY? B89 CO or eax, eax
BBYEGBEB 75 38 jnz short LOGAL_Return
AB4EGBED FF 75 AC push dword ptr [ebp+iCh]
BO4EGBFB FF 75 088 push dword ptr [ebp+8]
BBLEGBF3 E8 AB 3A B0 0O call _fopen
BBLEGBF8 83 C4 88 add esp, &
BauEGBFE 31 DB xor ebx, ebx
BO4EGBFD 69 CA or eax, eax
GBLEGOFF 74 24 jz short LOCAL_Return
BB4EGT161 B7 45 08 ®xchg eax, [ebp+d]
BB4EGT B4
AB4EGT B4 loc_4E6184:
BBLEGTBL 68 48 77 62 PO push offset a_q
BBLEATEY 58 push eax
BBLEG18BA E8 81 36 B0 BA call _strstr
BBLEG1AF B3 CL 68 add esp, &
@auE6112 31 DB xor ebx, ebx
BB4E611L B9 CA or eax, eax
GBLEG116 74 6D jz short LOCAL_Return
BO4EG118 83 CO B2 add eax, ?
GBLEGT1B 38 18 cmp [eax], bl
BBLEG11D 75 ES ihz short loc_4E610%
BB4EGT1F B8 58 FE mov [eax-2], bl
AB4EG122 BE 45 68 mov eax, [ebp+8]
BBLEG125
BBLEG125 LOCAL_Return:
ABLEG125
BB4E6125 5D pop ebp
GBLEGT126 C2 B8 B0 retn 8
This code will:

1) call FUNC_fopen_Container

2) on success, return

3) on failure, call fopen

4) on failure, return

5)

6)

CODE XREF: FUNC_fopen_ServerSide+DSTp

CODE XREF: .text:@84E611DL]
s

CODE XREF: _text:BO4E6GEBT]
.text:@BREGBFFT] ...

on success, remove “.q” from the filename (veryomant to make this work)

return

Even though we now have created a cool functionwviibcall _fopen, we still need to make
the demo call this new function.

This is done in FUNC_fopen_ServerSide.

Before:

B84ESDBD 1oc 4ESDED: ; CODE XREF: FUNC_fopen ServerSide+aDTj
884E5DBD lea eax, [esp+42Ch+UAR ModifiedAccessiode]

BA4ESDCA lea ecx, [esp+42Ch+UAR_FilenameWithi]

AB4ESDLCS push eax ; Mode

BB4ESDCA push eCx : Filename

AB4ESDCY mow ecx, GLOBAL Class UODEMODAT

BB84ESDCD Xor ebx, ebx

BB4ESDCF call FUNC_fopen_Container

BA4ESDDA mou esi, eax

B84ESDDA test esi, esi

BBLESDDSB jz short LOGCAL Returniero

A84ESDDA test esi, esi

AALRESDDC may ebhx, 1

BB4ESDE1 jnz short LOCAL RegisterAsThroughContainer

GB4ESDEZ

AO4ESDER LOCAL Returndero: ; CODE XREF: FUMC fopen SeruverSide+DETj
BB4ESDE3 Xor eax, eax

AB4ESDES jmp short LOCAL Return

e G e
BB4ESDEY

BAMESDEY LOCAL RegisterAsThroughContainer: ; CODE XREF: FUMC fopen_ ServerSide+E7Tj
After:

:BBYESDBD loc 4ESDBD: ; CODE XREF: FUHC fopen ServerSide+aDTj
:BBLESDCY 8D 4G 24 28 lea ecx, [esp+42Ch+UAR_FilenameWith{]

(BO4ESDCS 58 push eax ; Hode

‘BBYESDLG 51 push ecx ; Filename

:BBLESDCY BB 6D 4B 16 70 88 mov ecx, GLOBAL_Class UDDEHODAT

(BO4ESDCD 33 DB xor ebx, ebx

BBLESDCF EB B4 B3 B8 6O call FUNC_rename_ServerSide

:@B4ESDD Y B9 CH mou esi, eax

‘@B4ESDD6 8BS Fé test esi, esi

(BBYESDDR 74 B9 jz | short LOCAL ReturnZero

(@B4ESDDA EB OB jmp short LOCAL RegisterfsThroughContainer

:BBYESDDC Gt e
(BBLESDDEC 28 nop

‘BBLESDDD 98 nop

BBLESDDE 28 nop

.BBYESDDF 98 nop

'BBLESDER 28 nop

:BBLESDE1 %6 nop

‘BBLESDE2 28 nop

:BBLESDE3

:BBLESDE3 LOCAL ReturnZerso: ; CODE XREF: FUNC_fopen_ServerSide+DET)
'BO4ESDES 33 CA ®or eax, eax

:BBLESDES EB 6D jmp short LOCAL Return

{BOUESDET 0 0 0 S el S e S e e i i
(BBYESDEY

| BB4ESDET LOCAL_RegisterAsThroughContainer: ; CODE XREF: FUNC_fopen_ServerSide+E@lj

NOTE: the color is different because the secontupowas taken while the debugger was
active

ADDITIONAL NOTE: don't think | didn’t see the demarash, it took me several tries to
make it right, and the first time | didn’t remoweet”.q” which gave weird results. Also
when you do this, make sure you operate on a ddrreadir”, a corrupt “.rundir” will kill
the beast most likely.

You can now go ahead and patch your uodemo.exe@@mo+.exe).

But this will never work unless you modify uodemat.or uodemo+.dat). The fopen
function will only be called if the file isn’t fouhinside the DAT archive/container.

You can create an empty uodemo.dat, a 0-bytesdbag/DAT file will not crash the demao.

An extra patch will be required to remove UODEMO.Déompletely, that's an exercise for
you my dear.

