1. Introduction

UO Packet logger is a small tool that let you to search and determine changes in Ultima Online Client-Server Protocol. It works with 4.x.x. clients only, when connected to any official EA shard and supports both 2d and 3d clients. That means that you have to patch your Ultima Online to the current official version and surely have an OSI account to make this program work. This program is not completed. It is beta test version! So it is buggy! It was tested on Windows XP only. (

This program is created for UO Protocol viewing purposes only. It cannot cause any premeditated damage to client or server software and doesn't modify any code copyrighted by Electronic Arts. I certify that this program doesn't contain any code that can cause damage user's software or hardware, don't contain any built-in viruses or Trojans that can disclose user's private information.
2. Configuration

To make UOLogger to work properly you should configure it in UOLogger.cfg.
It consists of 3 sections:

1. [Configuration]

2. [Packets]

3. [Subcommands]

Configuration variables and Section headers are not case sensitive. In case of error in configuration file command variable takes default value that is shown below within [] brackets. You can make notes within configuration file with semicolon sign from the beginning of a line.

The [End] string must be placed at the end of configuration file.

2.1. Configuration section

This section describes variables that controls the type of information you wants to get in your log file.

This section begins with

[Configuration]

The following variables and their values are acceptable:

LogFile = filename without quotes.
Defines filename you are going to save info in.

InMesHeader = [ON]/OFF

Outputs incoming messages information.
OutMesHeader = [ON]/OFF

Outputs outgoing messages information.
DumpInMessage = [ON]/OFF

Makes dump of all incoming messages.
DumpOutMessage = [ON]/OFF

Makes dump of all outgoing messages.
SortInPackets = [ON]/OFF

Analyzes incoming messages, finds packets in them and outputs information into log file.

SortOutPackets = [ON]/OFF

Analyzes outgoing messages, finds packets in them and outputs information into log file.

DumpUnknown = ON/[OFF]

Dumps messages only if it contains unknown packets or subcommands.

This option outputs information according to values of DumpInMessage/DumpOutMessage and InMesHeader/OutMesHeader to avoid dubbing in output file.

HaltOnUnknown = ON/[OFF]

Terminates client program work if an unknown packet (not subcommand) is found. It works only when SortInPackets, SortOutPackets or DumpUnknown is ON.

If any of these parameters are not written in your configuration file they take default values.

2.2. Packets section
This section defines the known UO protocol packets to let UOLogger know how to determine them and correctly output into log file. The default configuration file contains all documented packets to the date of UOLogger release, according to author knowledge. Simply add new found packets to the section to make them be logged as "known" using the syntax described below.

The section begins with

[Packets]

The definition syntax of a packet is:

ID LEN DESCRIPTION

Where, space separated:

ID - a hex number from 0x00 to 0xFF - a header of packet.

LEN - a hex number from 0x0000 to 0xFFFF - a length of packet. Put 0x0000 for a packet with a variable length.
length.

DESCRIPTION - a string that describes a packet in a logger output file. (up to 28 characters).

For example:

0x80 0x003e Login Request

defines packet with header 0x80 and length of 0x3e as "Login Request" packet.

All values in this section MUST be hexadecimal in C-style format.

2.3. Subcommands section
This section defines the known subcommands of BF packet and has similar syntax with previous section. You can also add new subcommands to this section.

The section begins with

[Subcommands]

The definition syntax of a subcommand is:

ID DESCRIPTION

Where, space separated:

ID - a hex number from 0x0000 to 0xFFFF - an ID of subcommand.

DESCRIPTION - a string that describes a subcommand in a logger output file. (up to 28 characters).

For example:

0x000b Client Language

defines subcommand with ID 0x000b as "Client Language" subcommand.

All values in this section MUST be hexadecimal in C-style format.

3. At the End

I hope you will find this tool useful.
